Традиционные кремниевые солнечные элементы хрупки, поэтому они должны быть заключены в стеклянный корпус и упакованы в тяжелую толстую алюминиевую раму, что ограничивает, где и как их можно использовать. Шесть лет назад команда ONE Lab произвела солнечные элементы, используя развивающийся класс тонкопленочных материалов, которые были настолько легкими, что могли сидеть на мыльном пузыре. Но эти ультратонкие солнечные элементы были изготовлены с использованием сложных вакуумных процессов, которые могут быть дорогими и сложными для масштабирования.

Но прогресс не стоял на месте, и инженеры намеревались разработать тонкопленочные солнечные элементы, полностью пригодные для печати, с использованием материалов на основе чернил и масштабируемых технологий производства. И у них получилось! Сотрудники ONE Lab (сформированной на базе Массачусетского технологического института) создали новые сверхлегкие тканевые солнечные элементы, которые могут легко и быстро превратить любую поверхность в источник энергии.

Эти прочные, гибкие солнечные элементы, которые намного тоньше человеческого волоса, приклеены к прочной и легкой ткани, что упрощает их установку на неподвижную поверхность. Они могут обеспечивать энергией на ходу в качестве "умной" ткани или транспортироваться и быстро развертываться в удаленных местах для оказания помощи в чрезвычайных ситуациях. Они в 100 раз легче обычных солнечных панелей, генерируют в 18 раз больше энергии на килограмм и изготавливаются из полупроводниковых чернил с использованием процессов печати, которые в будущем можно масштабировать до производства на больших площадях.

Поскольку они такие тонкие и легкие, эти солнечные элементы можно ламинировать на самых разных поверхностях. Например, они могут быть интегрированы в паруса лодки для обеспечения питания в море, прикреплены к палаткам и брезентам, которые развертываются в операциях по ликвидации последствий стихийных бедствий, или установлены на крыльях дронов для увеличения дальности их полета. Эта легкая солнечная технология может быть легко интегрирована в застроенную среду с минимальными требованиями к установке.

Источник: MIT.
Образец созданных солнечных элементов.

Для производства солнечных элементов они используют наноматериалы в виде электронных чернил, пригодных для печати. Работая в чистой комнате Массачусетского технологического института, инженеры создают структуру солнечного элемента с помощью устройства для нанесения покрытий, которое наносит слои электронных материалов на подготовленную съемную подложку толщиной всего 3 микрона. Используя трафаретную печать, электрод наносится на структуру, чтобы завершить солнечный модуль. Затем исследователи могут отделить печатный модуль толщиной около 15 микрон от пластиковой подложки, сформировав сверхлегкое устройство по сбору солнечной энергии.

Но с такими тонкими автономными солнечными модулями сложно обращаться, и они могут легко порваться, что затруднит их развертывание. Чтобы решить эту проблему, команда Массачусетского технологического института искала легкую, гибкую и высокопрочную подложку, к которой можно было бы прикрепить солнечные элементы. Они определили ткани как оптимальное решение, поскольку они обеспечивают механическую устойчивость и гибкость с небольшим дополнительным весом.

Они нашли идеальный материал — композитную ткань весом всего 13 граммов на квадратный метр, известную как Dyneema. Эта ткань изготовлена ​​из настолько прочных волокон, что их использовали в качестве канатов для подъема затонувшего круизного лайнера Costa Concordia со дна Средиземного моря. Добавляя слой УФ-отверждаемого клея толщиной всего несколько микрон, они прикрепляют солнечные модули к листам этой ткани. Это формирует сверхлегкую и механически прочную солнечную конструкцию.

Когда они протестировали устройство, исследователи обнаружили, что оно может генерировать 730 ватт энергии на килограмм, когда оно стоит отдельно, и около 370 ватт на килограмм, если оно развернуто на высокопрочной ткани Dyneema, что примерно в 18 раз больше мощности на килограмм. чем обычные солнечные батареи.

Для понимания масштабов в опубликованной работе приводится сравнение с батареями установленными на крыше самого института. Установка солнечной энергии имеет мощность около 8000 Вт, и являются крайне массивной конструкцией. Если бы при постройке использовалась новая разработка, то общей вес такой же мощной солнечно электростанции составил всего 20 килограммов.

Сейчас команда продолжает активные тесты новых светочувствительных элементов, в том числе и на износ, готовя продукт к выпуску на рынок.