Ученые МГУ, участники международной коллаборации LIGO и Virgo, впервые зафиксировали гравитационные волны от слияния двух нейтронных звезд, причем это явление наблюдали не только на лазерных интерферометрах, регистрирующих гравитационные волны, но и с помощью космических обсерваторий (Интеграл, Fermi) и наземных телескопов, которые регистрируют электромагнитное излучение.

17 августа оба детектора LIGO зарегистрировали гравитационный сигнал, названный GW170817. Информация, предоставленная третьим детектором Virgo, позволила значительно улучшить локализацию космического события.

Почти в то же время (примерно через две секунды после гравитационных волн) космический гамма-телескоп NASA Fermi и Международная орбитальная обсерватория гамма-лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) обнаружили всплески гамма-лучей. В последующие дни было зарегистрировано электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

Сигналы детекторов LIGO показали, что зарегистрированные гравитационные волны излучались двумя астрофизическими объектами, вращающимися друг относительно друга и расположенными на относительно близком расстоянии — около 130 млн световых лет — от Земли.

Оказалось, что объекты были менее массивными, чем ранее обнаруженные LIGO и Virgo двойные черные дыры. Согласно вычислениям, их массы находились в диапазоне от 1,1 до 1,6 массы Солнца, что попадает в область масс нейтронных звезд, самых маленьких и самых плотных среди звезд. Их типичный радиус составляет всего 10–20 км.

Если сигнал от сливающихся двойных черных дыр обычно находился в диапазоне чувствительности детекторов LIGO в течение долей секунды, то сигнал, зарегистрированный 17 августа, длился около 100 секунд. Спустя примерно две секунды после слияния звезд произошла вспышка гамма-излучения, которая была зарегистрирована космическими гамма-телескопами. Быстрое обнаружение гравитационных волн командой LIGO-Virgo в сочетании с обнаружением гамма-излучения позволило запустить наблюдение оптическими и радиотелескопами по всему миру.

Получив координаты, обсерватории уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие.

Новая светлая точка, напоминающая новую звезду, была обнаружена оптическими телескопами. В конечном итоге около 70 обсерваторий на Земле и в космосе наблюдали это событие в различных диапазонах длин волн. В последующие дни после столкновения было зарегистрировано электромагнитное излучение в рентгеновском, ультрафиолетовом, оптическом, инфракрасном и радиоволновом диапазонах.

Теоретики предсказывают, что при столкновении нейтронных звезд должны излучаться гравитационные волны и гамма-лучи, а также извергаться мощные струи вещества, сопровождающиеся излучением электромагнитных волн в широком частотном диапазоне.

Обнаруженный гамма-всплеск является так называемым коротким гамма-всплеском. Ранее ученые лишь предсказывали, что короткие гамма-всплески генерируются при слиянии нейтронных звезд, а теперь это подтверждено наблюдениями. Но несмотря на то, что источник обнаруженного короткого гамма-всплеска был одним из самых близких к Земле, видимых до сих пор, сам всплеск был неожиданно слаб для такого расстояния. Теперь ученым предстоит найти объяснение этому факту.

В момент столкновения основная часть двух нейтронных звезд слилась в один ультраплотный объект, испускающий гамма-лучи. Первые измерения гамма-излучения в сочетании с детектированием гравитационных волн подтверждают предсказание общей теории относительности Эйнштейна, а именно, что гравитационные волны распространяются со скоростью света.

«Во всех предыдущих случаях источником гравитационных волн были сливающиеся черные дыры. Как это ни парадоксально, черные дыры — это очень простые объекты, состоящие исключительно из искривленного пространства и поэтому полностью описывающиеся хорошо известными законами общей теории относительности. В то же время, структура нейтронных звезд и, в частности, уравнение состояния нейтронной материи до сих пор точно неизвестны. Поэтому изучение сигналов от сливающихся нейтронных звезд позволит получить огромное количество новой информации также и о свойствах сверхплотной материи в экстремальных условиях», — говорит профессор МГУ Фарит Халили.

Теоретики предсказали, что в результате слияния образуется «килоновая». Это явление, при котором оставшийся от столкновения нейтронных звезд материал ярко светится и выбрасывается из области столкновения далеко в космос. При этом возникают процессы, в результате которых создаются тяжелые элементы, такие, как свинец и золото. Наблюдение после свечения слияния нейтронных звезд позволяют получать дополнительную информацию о различных стадиях этого слияния, о взаимодействии образовавшегося объекта с окружающей средой и о процессах, которые производят самые тяжелые элементы во Вселенной.

«В процессе слияния зафиксировано образование тяжелых элементов. Поэтому можно говорить даже о галактической фабрике по производству тяжелых элементов, в том числе золота. Ученые  начинают предлагать модели, которые объяснили бы наблюдаемые параметры этого слияния», — отметил профессор МГУ Сергей Вятчанин.